SR Taylor & Francis
Taylor & Francis Group

rrslel fneents |International Journal of Parallel, Emergent and
Distributed Systems

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/gpaa20

Move optimal and time optimal arbitrary pattern
formations by asynchronous robots on infinite grid

Satakshi Ghosh, Pritam Goswami, Avisek Sharma & Buddhadeb Sau

To cite this article: Satakshi Ghosh, Pritam Goswami, Avisek Sharma & Buddhadeb Sau (2023)
Move optimal and time optimal arbitrary pattern formations by asynchronous robots on infinite
grid, International Journal of Parallel, Emergent and Distributed Systems, 38:1, 35-57, DOI:
10.1080/17445760.2022.2124411

To link to this article: https://doi.org/10.1080/17445760.2022.2124411

ﬁ Published online: 20 Sep 2022.

N
[:J/ Submit your article to this journal &

||I| Article views: 31

A
& View related articles &'

Py

@ View Crossmark data (&

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=gpaa20

https://www.tandfonline.com/action/journalInformation?journalCode=gpaa20
https://www.tandfonline.com/loi/gpaa20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/17445760.2022.2124411
https://doi.org/10.1080/17445760.2022.2124411
https://www.tandfonline.com/action/authorSubmission?journalCode=gpaa20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=gpaa20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/17445760.2022.2124411
https://www.tandfonline.com/doi/mlt/10.1080/17445760.2022.2124411
http://crossmark.crossref.org/dialog/?doi=10.1080/17445760.2022.2124411&domain=pdf&date_stamp=2022-09-20
http://crossmark.crossref.org/dialog/?doi=10.1080/17445760.2022.2124411&domain=pdf&date_stamp=2022-09-20

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS ,
2023, VOL. 38, NO. 1, 35-57 Taylor & Francis

https://doi.org/10.1080/17445760.2022.2124411 Taylor &Francis Group

’ W) Check for updates

Move optimal and time optimal arbitrary pattern formations by
asynchronous robots on infinite grid

Satakshi Ghosh @, Pritam Goswami @@, Avisek Sharma ©@ and Buddhadeb Sau

Department of Mathematics, Jadavpur University, Kolkata, India

ABSTRACT ARTICLE HISTORY

The ARBITRARY PATTERN FORMATION (APF) is widely studied in distributed com- Received 27 May 2022
puting for swarm robots. This paper deals with the ApF problem in an infinite Accepted 1 September 2022
grid under an asynchronous scheduler. In [Bose K, Adhikary R, Kundu MK, KEYWORDS

et al. Arbitrary pattern formation on infinite grid by asynchronous oblivi- Distributed computing;
ous robots. Theor Comput Sci. 2020;815:213-227], the authors proposed autonomous robots; arbitrary
an algorithm for Apr problem in OBLO7 model under an asynchronous pattern formation; robots
scheduler, but the proposed algorithm was neither time optimal nor move with lights; asynchronous;
optimal. This work provides two algorithms that solve Apr problem in an look—compute-move cycle;
asynchronous scheduler. The first algorithm is move optimal considering grid

OBLOT model and the second algorithm is move and time optimal con-

sidering the LU/ MZ model, where each robot has one light having three

distinct colours.

1. Introduction

In distributed systems, the robot swarm coordination problems are being studied for the last two
decades. The main aim of the distributed system is to use a swarm of inexpensive robots to do any
particular work rather than using a very expensive robot. ARBITRARY PATTERN FORMATION (APF) is a funda-
mental coordination problem for autonomous robot swarms. The goal of this problem is to design a
distributed algorithm that guides the robots to form any specific but arbitrary pattern given to the
robots as an input. In this context, the main research difficulties are which patterns can be formed and
how they can be formed. In the Euclidean plane, robots can move in any direction for a very small
amount of distance, but it is not always possible for robots with weak capabilities to move accurately.
So it is interesting to consider this type of problem in grid terrain, where robot movement is restricted
in between grid points. In practical applications, the interest has shifted to using a large number of
simple robots which are easy to design and deploy and have minimal capabilities to make the system
cost-effective.

In the theoretical framework, depending on the capabilities there are generally four types of robot
models. These models are OBLOT, FST A, FCOM and LUMZ. In each of these models robots
are assumed to be autonomous (i.e the robots do not have any central control), identical (i.e the robots
are physically indistinguishable), and homogeneous (i.e each robot runs on the same algorithm). In the
OBLOT model, the robots are silent (i.e there is no means of communication between the robots)
and oblivious (i.e the robots do not have any persistent memory to remember their previous state), in
FST Amodel, the robots are silent but not oblivious, in FCO.M model, the robots are oblivious but

CONTACT Satakshi Ghosh @ satakshighosh.math.rs@jadavpuruniversity.in; Pritam Goswami
@ pritamgoswami.math.rs@jadavpuruniversity.in; Avisek Sharma @ aviseks.math.rs@jadavpuruniversity.in; Buddhadeb Sau
@ buddhadeb.sau@jadavpuruniversity.in

© 2022 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/17445760.2022.2124411&domain=pdf&date_stamp=2022-12-31
http://orcid.org/0000-0003-1747-4037
http://orcid.org/0000-0002-0546-3894
http://orcid.org/0000-0001-8940-392X
http://orcid.org/0000-0001-7008-6135
mailto:satakshighosh.math.rs@jadavpuruniversity.in
mailto:pritamgoswami.math.rs@jadavpuruniversity.in
mailto:aviseks.math.rs@jadavpuruniversity.in
mailto:buddhadeb.sau@jadavpuruniversity.in

36 (&) S.GHOSHETAL.

not silent and in LU MZ model, robots are neither silent nor oblivious. The robots do not have access
to any global coordinate system. The robots after getting activated operate in a Look—CompuTE—MovE
(Lcm) cycle. In Look phase, a robot takes input from its surroundings and then with that input runs the
algorithm in CompuTe phase to get a destination point as an output. The robot then goes to that des-
tination point by moving in the Move phase. The activation of the robots is controlled by a scheduler.
There are mainly three types of schedulers considered in the literature. In a fully synchronous sched-
uler, timeis divided into global rounds. In a fully synchronous (FSync) scheduler, each robot is activated
in all rounds and executes Lcm cycle simultaneously. In a semi-synchronous scheduler (SSync), all robots
may not get activated in each round but the robots that are activated in the same round execute the
Lcm cycle simultaneously. Lastly in the asynchronous scheduler (ASync), there is no common notion of
time, a robot can be activated at any time. There is no concept of rounds. So there is no assumption
regarding synchronisation.

Leader election is an important task for the pattern formation problem, where a unique robot is
elected as a leader. In [1], an arbitrary pattern formation algorithm is given in an infinite grid under
asynchronous scheduler considering OBLO7 model. This paper aims to solve the arbitrary pattern
formation problem in an infinite grid by a swarm of robots with the optimal number of moves and
within optimal time under a fully asynchronous scheduler. First, this work proposes an algorithm
that solves the ApF problem in an infinite grid with the optimal number of robot moves in OBLOT
model. Furthermore, we propose another algorithm for solving Apr problem on an infinite grid con-
sidering in LUMZ model for robots which is both move and time optimal. Our work shows that
the algorithm proposed in [1] is not move optimal asymptotically. And this work also shows that
AP problem can be solved faster than the algorithm proposed in [1] by introducing communicable
memory.

2. Related works and our contribution
2.1. Related work

The Arbitrary pattern formation problem has been studied in various settings. In the Euclidean plane,
this problem was first studied by Suzuki and Yamashita [2]. They provided a complete characteri-
sation of the class of pattern formable in FSync and SSync for anonymous robots with unbounded
memory. Later in [3], they characterised the families of patterns formable by oblivious robots in FSYnc
and SSyNc. Then Flochhini [4] studied the cases of solvability of this problem under various assump-
tions. They showed that without a common coordinate system Apr problem is not solvable, but when
there are both axes-agreement, the problem can be solved. Furthermore, with one axis agreement,
any odd number of robots can form an arbitrary pattern, but an even number of robots cannot in the
worst case. In [5], the authors have established a relationship between LEADER ELECTION and ARBITRARY
PATTERN FORMATION of robots under an asynchronous scheduler. Later they also showed that the arbi-
trary pattern formation is possible to solve when n > 4 with chirality (resp. n > 5 without chirality)
if and only if leader election is solvable. In [6], the authors consider the arbitrary pattern formation
problem with four robots in the asynchronous model with or without chirality. In [7], the authors have
solved the Apr problem with inaccurate movement where the formed pattern is very similar to the
target pattern, but not exactly the same. A randomised pattern formation problem was studied in [8].
In [9], the authors have shown some configurations where embedded pattern formation is solvable
without chirality and some configuration where embedded pattern formation are deterministically
unsolvable.

For grid network, the arbitrary pattern formation was first studied by [1] in OBLO7T model with
full visibility. Later in [10], the authors studied the Aprr on a regular tessellation graph.

Another interesting direction of solving this problem is when visibility is limited. Yamauchi in their
paper [11] first showed that oblivious robots under FSync model with limited visibility can not solve
ArF. Therefore, they considered non-oblivious robots with unlimited memory. For these robots, they

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS . 37

Table 1. Comparison table.

Paper Robot model Visibility model No. of colours Move complexity Time complexity

1 OBLOT Unobstructed - oD?) Q(D'H)[Res.1]

[18] LUMT Obstructed 9 - -
APFOPTMOvE ~ OBLOT Unobstructed - O(D'*)[Th.5.12] (optimal) O(D’*)[Th5.13]
FASTAPF LUMT Unobstructed 3 O(D’Z)[Th.6.5] (optimal) O(D')[Th.6.4] (optimal)

presented algorithms that work in FSync with non-rigid movements and in SSync with rigid move-
ments. After that in [12], the authors have solved this problem in an infinite grid under 2 hop visibility.
The problem was studied in a synchronous setting for robots with constant-size memory, where the
robots agree on a common coordinate system.

A special case of a formation problem is mutual visibility problem [13] and a gathering problem
[14]. In mutual visibility, robots are opaque so the main task is to form a configuration where no three
robots are co-linear. Recently, Apr problem was solved in a euclidean plane in [15] with opaque robots
and in [16] with fat robots considering the luminous model. In an infinite grid, the arbitrary pattern
formation problem was studied in [17] with opaque robots and in [18] with fat robots. The work in
[19] solves APF in the obstructed visibility model without any agreement in the coordinate system,
where they showed that the run time to solve Apr is bounded above by the time required to elect a
leader. Another special case of formation problem, Uniform circle formation is investigated in [20, 21].
Das et al. solved the problem of forming a sequence of patterns in a given order [22]. Further, they
extended the sequence of pattern formation problems for luminous robots in [23]. There are many
works [24, 25] where the pattern can be formed by robots with multiplicities. Pattern formation in
the presence of faulty robots is an important topic of research. In [26], they studied the formation of
patterns allowing only crash fault robots. In the next subsection, we shall discuss the scope of our work
comparing it with relevant works.

2.2. Our contribution

In this work, our goal is to solve Apr problem under the full visibility model optimally in terms of energy
and time. Energy is measured by the number of moves made by the robots and time can be measured
by the total number of epochs required to solve the problem. First, we define the input size of the
problem. Let k be the number of robots in the input configuration and D be the size of the smallest
square that can contain both the initial configuration and the target pattern/configuration. Let D’ =
max{D, k}.

In[1], the authors provided an algorithm solving Apr problem in O3LO7T model. But the solution is
not optimal in terms of energy because the algorithm proposed in [1] needs all total O(kD?) = O(D’?)
moves. Also in [1], the authors showed that any algorithm solving Apr requires ©2(D’?) total moves.
In this work, we propose an algorithm that solves the Apr problem in OBLO7T model which requires
O(D"?) total robot moves, which is asymptotically optimal. Then the algorithm proposed in [1] requires
Q(D'?) epoch time in the worst case (Result 1). We show in this work that any algorithm solving Apr
requires 2 (D’) epoch time. In this work, we propose another algorithm that solves Apr in LUMZT
model. This algorithm requires O(D’) epoch time which is faster than the algorithm proposed in [1].
This also establishes that our algorithm is asymptotically time optimal in LU MZ model. Although we
cannot tell that the algorithm proposed in [1]is not time optimal because it is done in OBLO7T which
is a weaker model than LU MZ. Further, we also show that the second algorithm is move optimal
as well.

Although all the above-mentioned works in this subsection are done under the full visibility model,
in [18], the authors solve Apr under obstructed view considering fat robots. However, authors did not
do any complexity analysis. Authors in [18] used 9 colours to solve the problem where our algorithm
uses only 3 colours. The above discussion is briefly presented in Table 1.

38 (&) S.GHOSHETAL.

2.3. Organization of the paper

Section 3 describes the relevant robotics model of this work. Section 4 states and describes Aprr
problem. Next Section 5 and Section 6 provide two algorithms and their algorithm descriptions and
correctness proofs. Section 5 provides the move optimal algorithm in OBLO7 model and Section 6
provides the time and move optimal algorithm in LU/ MZ model. Finally, Section 7 concludes this
work.

3. Robot model
3.1. Classical oblivious robots

In the first problem, the OBLOT model is considered for the robots. In this model, robots are
anonymous, identical, and oblivious, i.e. they have no memory of their past rounds. They can not com-
municate with each other. All robots are initially in distinct positions on the grid. The robots can see
the entire grid and all other robots’ positions which means they have global visibility. This implies
the robots are transparent and hence the visibility of a robot can not be obstructed by other robots.
Robots have no access to any common global coordinate system. They have no common notion of
chirality or direction. A robot has its local view and it can calculate the positions of other robots with
respect to its local coordinate system with the origin at its own position. There is no agreement on
the grid about which line is x- or y-axis and also about the positive or negative direction of the axes.
As the robots can see the entire grid, they will set the axes of their local coordinate systems along the
grid lines.

3.2. Robots with lights

In the second problem the LU/ MZ model has been considered. In this model, the robots are anony-
mous and identical and they have constant memory (finite number of lights). Each robot has a light that
can assume one colour at a time from a constant number of different colours. All the other assumptions
are the same as the classical oblivious robots model.

3.3. Look-Compute-Move cycles

An active robot operates according to the Look-Compute—Move cycle. In each cycle, a robot takes
a snapshot of the positions of the other robots according to its own local coordinate system (Look);
based on this snapshot, it executes a deterministic algorithm to determine whether to stay put or to
move to an adjacent grid point (CompuTe); and based on the algorithm the robot either remain sta-
tionary or makes a move to an adjacent grid point (Move). When the robots are oblivious they have
no memory of past configurations and previous actions. After completing each Look-Compute-Move
cycle, the contents in each robot’s local memory are deleted. When each robot is equipped with an
externally visible light, which can assume a O(1) number of predefined colours, the robots commu-
nicate with each other using these lights. The lights are not deleted at the end of a cycle. In second
algorithm, we use one light which takes off, HEAD and LINE colours.

3.4. Scheduler

We assume that robots are controlled by a fully asynchronous adversarial scheduler (ASync). The
robots are activated independently and each robot executes its cycles independently. This implies the
amount of time spent in Look, CompuTE, MOVE and inactive states is finite but unbounded, unpredictable
and not same for different robots. The robots have no common notion of time.

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS . 39

3.5. Movement

In discrete domains, the movements of robots are assumed to be instantaneous. This implies that the
robots are always seen on grid points, not on edges. However, in our work, we do not need this assump-
tion. In the first proposed move optimal algorithm, we assume the movements are to be instantaneous
for simplicity. However, this algorithm also works without this assumption. In that case, the robots are
asked to wait and do nothing if they see a robot on a grid edge. In the second proposed time optimal
algorithm no such assumption is required. That is, if a robot sees any robot on an edge, it still does its
job as directed by the algorithm. The movement of the robots is restricted from one grid point to one
of its four neighbouring grid points.

3.6. Measuring run time

Generally, time is measured in rounds in fully synchronous settings. But as robots can stay inactive for
an indeterminate time in semi-synchronous and asynchronous models, epochs are considered instead
of rounds. During an epoch, it is assumed that all robots are activated at least once. Here in the second
algorithm, we calculate the run time with respect to epochs.

Next, we describe the Arbitrary Pattern Formation problem in an infinite grid in the next section.

4. Problem description
4.1. Problem statement

Suppose a swarm of robots is placed in an infinite grid such that no two robots are on the same grid
node and the configuration formed by the robots is asymmetric. The Arbitrary Pattern Formation (APF)
problem asks to design a distributed algorithm following which the robots autonomously can form
any arbitrary but specific pattern, which is provided to the robots as an input, without scaling it or
colliding with another robot.

Let's discuss some facts about the problem. The input target pattern can be any arbitrary pattern.
The required distributed algorithm has to be independent of the input target pattern, that is, the same
algorithm should work for any target input pattern. The whole target pattern is given to all the robots
but no robot knows its target position beforehand. The target pattern can be provided to the robots
with respect to some coordinate system but the robots initially do not agree on any coordinate system.
Robots are not allowed to scale the pattern configuration but are allowed to transform or rotate it.
From the motivation from [27], we assume that the initial configuration of robots is asymmetric. But
the target pattern can be any pattern (can possibly be symmetric). The algorithm solving ApF must take
care that no two robots collide.

In each of the next two sections, we provide an algorithm that solves the Arbitrary Pattern
Formation problem. The first one works in OBLO7 model and the latter one works in LU/ MZ model.

5. Optimal move APF algorithm (APFOPTMOVE)
5.1. Agreement on global coordinate system

Here we consider an infinite grid G as a cartesian product P x P, where P is an infinite (from both sides)
path graph. The infinite grid G is embedded in the Cartesian Plane R?. We know that the solvability
of Arbitrary pattern formation depends on the symmetries of the initial configuration of the robots.
Here we are assuming that the initial configuration is asymmetric. The robots do not have an access
to any global coordinate system even though each robot can form a local coordinate system aligning
the axes along the grid lines. To form the target pattern the robots need to reach an agreement on a
global coordinate system. This subsection provides details of the procedure that allows the robots to
reach an agreement on a global coordinate system.

40 (&) S.GHOSHETAL.

D T C
[] []
[] []
[] ®
Al o o B

Figure 1. In this configuration, AB is the largest string. Here the binary string of AB is 011000000100
101000010000000001000010100100. H and 7 are head and tail, respectively.

For a given configuration (C) formed by the robots, let the smallest enclosing rectangle, denoted by
s.rect(C), is the smallest grid aligned rectangle which contains all the robots. Suppose the s.rect of the
initial configuration C; is a rectangle R = ABCD of size m x n, such that m > n > 1. Let |AB| = n.Then
consider the binary string {s;} associated with a corner A, A4z as follows. Scan the grid from A along the
side ABto Band sequentially all grid lines of s.rect(Cz) parallel to ABin the same direction. And s; = 0, if
the position is unoccupied and s; = 1 otherwise (Figure 1). Similarly construct the other binary strings
Aga, Acp and Apc. Since the initial configuration is asymmetric we can find a unique lexicographically
largest string. If 245 is the lexicographically largest string, then A is called as the leading corner of R.

Next, suppose R isan m x m square, then consider the eight binary strings Aag, Aga, Acp, Apc, Asc,
AcB, AD, ADA- Adain since the initial configuration is asymmetric, we can find a unique lexicographically
largest string among them. Hence we can find a leading corner here as well.

Next, let C; be a line AB, we will have two strings A45 and Aga. Since C; is asymmetric then Axg and
Aga must be distinct. If A4 is lexicographically larger than X4, then we choose A as the leading corner.

Now for either case, if 14z is the lexicographically largest string then the leading corner A is consid-
ered as the origin, and the x-axis is taken along the AB line. If C; is not a line then the y-axis is taken
along the AD line. If A4z is a line then the y-coordinate of all the positions of robots is going to be zero
and in this case, the y-axis will be determined later.

For any given asymmetric configuration C if Ap is the largest associated binary string to C then
the robot causing the first non-zero entry in As is called head let H and the robot causing last non-
zero entry in Aag is called as tail let 7. We denote the ith robot of the A4 string as ri_1. A robot other
than head and tail is called Inner robot. Further we denote C' = C \ {tail}andC” = C \ {tail, head} and
C"” = C \ {Head},

Let Cr be the target configuration and s.rect(Cr) = Rr.Let Rrisarectangle of size M x NwithM >
N.We can calculate the binary strings associated with corners in the same manner as the previous one.
Cr is expressed in the coordinate system with respect to the origin, where the origin will be the leading
corner. Letthe A’B'C’D’ be the smallest rectangle enclosing the target pattern with A’B" < B'C’. Let Aap
be the largest (may not be unique) among all other strings. Then the target pattern is to be formed
such that A = A’, A'B’ direction is along the positive x-axis and A'D’ direction is along the positive y
-axis. If target pattern has symmetry then we have to choose any one among the larger string and
fixed the coordinate system. So as previously said headarger Will be the first one and tdilarger will be

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 41

Table 2. Boolean functions.

So C=Cr

S C'=C;

S, x-coordinate of the tail in C = x Coordinate of tiger in Cr

S3 m > max {N,n} + 2

S4 m > 2.max {M, V} where v is the length of the vertical side of the smallest enclosing rectangle of C’

Ss The head in C is at the origin.

Se n > max{N + 1,H + 1,k} where H is the length of the horizontal side of the smallest enclosing rectangle of C’
S7 c'=cf

S C’ has a non-trivial reflectional symmetry with respect to a vertical line.

59 c" = C;—”.

S10 Line formation on x-axis without tail and one inner robot.

the last one in the s.rect of C7. Also we define C7’ = C1 \ {tdiliarget}, Cr" = C1 \ {headyarget, tailtarget},
C1r"" = Cr \ {headiarget}. We denote the headiarge: position as to and tailiarger position as ti_1. Let H; be
the horizontal line having the height i from x-axis. Let for each i there are p(i) target positions on H;. We
denote the target positions of Hp as tp, t7 tp(0)—1 from left to right. For Hy we denote the target
positions as ty(0) to ty(0)+p(1)—1 from right to left. For H, we denote the target positions as ty0)+p(1) to
tp)+p(1)+p2)—1 from right to left. Similarly, we can denote all other target positions on H;, i > 0 except
tailtarger. Next, we give some relevant definitions.

Definition 5.1 (Inner robot): Arobot thatis not head or tail in a configuration is called an inner robot.

Definition 5.2 (Compact Line): A line is called compact if there is no empty grid point between two
robots.

5.2. Abrief outline of APFOPTMoVE algorithm

In this algorithm, our goal is to make Apr with move optimal. For this, robots initially form a line and
then form the arbitrary pattern that is given as input. We can divide our algorithm into eight phases.
Since the initial configuration is asymmetric, the robot can agree on a global coordinate system. So
robots can recognise where the pattern can be formed. Here robots have to maintain the coordinate
system during their movements. When a robot wakes up, it can be in any phase among the eight
phases. So, as the robots are oblivious they can check by their condition in which phase it is currently
in. The conditions are expressed in the Boolean function listed in Table 2. As the movement of a robot s
restricted in the discrete domain, here we have to maintain the movement without collision through-
out the algorithm. As maintaining the asymmetry is another main challenge of our algorithm, in the
first three phases the head will be put at the origin and the tail will expand to the smallest enclosing
rectangle for another robot can move but the head and tail remain unchanged and asymmetry is also
maintained. In phase four robots form a line on the x-axis without the tail and one inner robot of C'. In
phase five, all robots move to the fixed target position sequentially without a head and tail. In the last
three phases, the head and tail will reach their fixed target positions. During these phases movement
of robots are difficult as here the coordinate system may change. But here, we showed that asymmetry
and global coordinate will be maintained in all phases. In this way, arbitrary pattern formation can be
done.

5.3. Detailed description of the eight phases

5.3.1. Phase 1
A robot is in phase 1 then tail will move upwards and all other robots will remain static. When in phase
1 {51 A S} A —{S3 A S4} is true.

Theorem 5.3: If we have an asymmetric configuration C at some time t

42 (&) S.GHOSHETAL.

e After one move upward, the new configuration is still asymmetric and the coordinate system remains
unchanged.
e dafter one move by the tail upwards —{S; A S»} = true

Proof: Let ABCD be the initial smallest enclosing rectangle at any time t, and let the binary string
associated with AB be the largest with |AB| = nand |AD| = m, m > n.So initially, the tail is on the side
CD. But after the tail moves upward, the smallest enclosing rectangle changes. Let the new rectangle
is ABC'D'. Here tail 7 is now on the side C'D’. Now let 7 be the only robot initially on side CD, then it
is obvious that 72" > AZ2". But if there are multiple robots on CD then let t be the pth and gth term
of 299 and 2.94. Then,

Case-1: When p = g then t is the middle robot of CD, here pth term is the last 1 occurs in k/‘}’g so if
we calculate the binary string of first (p — 1) term of ABand BA in the new s.rect then also we get 12"
> Aga”

Case-2: When p > g then if we calculate the binary strings of AZ’g and kgf then 7 will appear earlier
in BA, than AB. Now if we calculate the binary strings of the first g term of AB and BA then Agﬁﬂq >
Agew|q. Also 2991, > anew|, But 299 > A%, So we have 259|, > 19|, Finally, we can say 5" |q >
M50 RG> AR,

Case-3: When p < gin that case when 7 robot moves upward then in the new s.rect we can calculate
that in this case also 155" > Az9".

So in all the cases 132" > AZ7". Now we show that the binary string of AB is larger than C'D’. As T
is the tail so we know that the binary string of AB is larger than CD, but when the tail robot moves one
step upward in that case as there is no robot other than the tail in C'D’ so if we calculate binary string
it will be AZZ" > AT,

In this case, ABC'D’ is a non-square grid, so four binary strings to consider here. By calculating
we can say that AB is the largest binary string in this new smallest enclosing rectangle. So the new
configuration is still asymmetric. So the coordinate system is unchanged. As the tail moves upward
so the x-coordinate remains unchanged, so —={S1 A S} remains the same after one move by the tail
robot. |

5.3.2. Phase 2
In this phase head H will move left towards the origin. When the algorithm is in phase 2 then either
S3 A S4 A =S5 A—S70r =53 A S3 ASa A—Ss A Syistrue.

Theorem 5.4: If we have an asymmetric configuration C at time t in phase 2 then

(1) after one move by the head robot to the left, the new configuration is still asymmetric and the
coordination system is not changed.
(2) after afinite number of moves by the head to the left Ss is true and phase 2 terminates.

Proof: AsABCDisthe smallest enclosing rectangle of all robots, let 145 be the lexicographically largest
string, after one move of the head to the left, now also Az is the largest string. Let at the ith term the
first 1 occurs in Aag, then in the other strings all the (i — 1) terms are 0. But when the head moves one
distance to the left then the new string form is now the largest. So the new configuration is asymmetric
and the global coordinate will not change. So the statement (1) is true, similarly by the finite number
of moves head move to the origin then S5 true. |

5.3.3. Phase 3

The goal of this phase is to make Se true. In this phase, the robots will check either Sg is true or false.
When the algorithm is in phase 3 then S3 A 54 A S5 A =S¢ A —=S7 = true. When Sg is false, then the
tail will move rightwards and the rest will remain static. But when Sg is true, the C’ has a non-trivial
reflectional symmetry with respect to a vertical line V.

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 43

R T.C ¢

7

R SR E——— Y

Figure 2. Case-1:C’ has a vertical symmetry and tail will move rightwards.

Let the smallest enclosing rectangle is R = ABCD where |AB| = nand |AD| = m,m > n.Let 45 be
the lexicographically largest string. In this case, tail will move right and after finite number of moves,
we have S3 A S4 A S5 A Sg A —=S7 =true.

Theorem 5.5: If we have an asymmetric configuration C at some time t then

(1) after one move rightward the new configuration is still asymmetric and the global coordinate system
remains unchanged.

(2) afterone move S4 A S5 A —S7 =true.

(3) after finite number of moves by the tail to the rightwards S3 A Sa A Ss A Se A —=S7 = true.

Proof: Let the smallest enclosing circle at time t is ABCD, where A4 is the largest string. After one
move by the tail rightward there may arise two cases.

Case-1: Suppose now tail robot is at C, then by one move of tail the new s.rect is APQD, where |AP| =
(n+ 1). Now it is easy to check that as m > n + 2 so m > n+ 1. So we get that AD > AP. This implies
that the new configuration is still not square, so we have to consider here only four binary strings, and
as earlier A4p will be a larger string. So we can conclude that the configuration is still asymmetric and
the coordinate system is not changed by one move of the tail. It is easy to check that S4 and S5 are true
here but not S;7. After the movement of the tail, S3 may become false, so we are in phase 1 then. Then
the tail moves upwards and one upwards move still has S3 A S4 A S5 A Sg A =57 is true.

Case-2: Let after one move by the tail, the smallest enclosing circle remain unchanged. As in this
phase, the head is in origin and the tail has moved until S4 true, in the binary string of CD or DC is
smaller than AB. Also in this phase, Sg is not true. So we must have AB larger string than BA, so finally,
we get 137" > Ag2”. Note that Sg is either true or false in phase 3 by a finite number of moves of the
tail the configuration remains asymmetric.

If Sg is true then there may happen two cases:

Case-1:thereis a vertical symmetry in C’ but if we consider ABCD then the tail is rightward of vertical
symmetry line V. Then tail will move rightwards and after a finite number of moves, S¢ is true (Figure 2).

Case-2: When the tail is in the left portion with respect to the vertical symmetric line V. Then tail
will not move rightwards (Figure 3). It will move to the left one more step than D, then the coordinate
system will be changed. B will be then the origin and x-axis = BA and y-axis = BC. Then the case will
be the same as case-1.

|

44 (&) S.GHOSHETAL.

D T E c._i_ ic”
IR]
D | . . g

°

0—-—42 ----- —1 B’

H

Figure 4. Line formation of robots on x-axis without tail and last inner robot.

5.3.4. Phase 4

In this phase, the configuration satisfies S3 A Sa A S5 A Se A =S7 A =Sq19 =true. Other than the tail and
one inner robot, all other inner robots form a line on the x-axis. In phase four, the head is in origin, and
all the robots on the x-axis first make the line compact, i.e. there is no empty grid point between two
robots. After the x-axis becomes compact, when a robot r; is on H; and there are no robots in between
H; and the x-axis and the right part of r; is empty in its horizontal line, then the robot moves to the x-
axis. This procedure is done one by one by robots. In between this movement, no collision will occur.
Finally when a robot sees that except for itself and tail all other inner robots are on the x-axis then it
will not move to the x-axis (Figure 4). So all the inner robots other than the tail and one inner robot
form a line on the x-axis.

Theorem 5.6: If we have an asymmetric configuration C such that S3 A Sa A Ss A Se A —S7—S19 = true
then in phase 4 after finite number of moves by the robots S19 becomes true and phase 4 terminates.

Proof: In previous phases when the tail robot expands the smallest enclosing rectangle and the head
robot moves to the origin, then in this phase robots that are on the x-axis make the line compact. In

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS . 45

-1 I N D N . . '8 C
T
t7 tg
1 x 1
7
°
t6 t5 t4 t3
X X X X
to ty
X X
to
Ae— e — % —— @ —0 &0 —----- —' B

roH ™ re T3 T4 s Te
Figure 5. Target formation without head and tail.

this move, a robot will move to its left grid point if it is empty, so the robot’s movement is in the left
direction. So collision will not occur. A robot r; which is on a horizontal line (let Hy) first checks that all
the down lines robots are on the x-axis or not, if yes then when a robot sees that the right side of its
horizontal line has also no robots, it will move to the x-axis. In this way, robots move down to the x-axis
one by one. So the movement of the robot is sequential here. A robot will not move until it sees that
it is the rightmost robot in its horizontal line and there is no more robot in the down horizontal lines
other than the x-axis. As the s.rect is expanded by the tail robot in the previous phases, a robot always
gets a path in the grid and moves to the x-axis. So collision will not occur in this movement. Finally
without the tail and one inner robot, after a time all other robots will form a line on the x-axis. Hence
Sqo is true. [|

5.3.5. Phase 5

In this phase, inner robots will move to the fixed target one by one. When one inner robot sees that all
other robots without itself and the tail are on the x-axis then it moves to t,_,. We call this inner robot
as Lastinner robot. When a robot on the x-axis sees that the Last inner robot is at its target position then
ith robot from the left on the x-axis will reach to t; target position when it sees that from t;1 to ty_;
positions are occupied (Figure 5).

Theorem 5.7: If we have an asymmetric configuration initially at some time t then

(1) By movement of inner robots, the new configuration is still asymmetric and the coordinate system
remains the same.
(2) After any move of the inner robots in this phase, C" = C} and phase 5 terminate and S; become true.

Proof: As the head is in origin and the tail robot expands the s.rect of the initial configuration, so by
the movement of inner robots, the coordinate system will not change and the configuration remains
asymmetric. Here our main concern is collision. In this phase, an inner robot r; moves to target position
ti when tjy1 to ty_, positions are occupied by robots. As of last inner robot moves to t,_ at the start
of this phase. Let us denote the robots on the x-axis from left to right as rg, r1, ..., rk_3. Then firstly
rx_s reaches tx_s, then ry_4 reaches ty_4 and so on. Finally, rj moves to t;. As the movement in this
phase is sequential that is no other robot moves until one moving robot reaches its target position.
Also since the target positions are ordered in such a way that every inner robot will find a unblock

46 (&) S.GHOSHETAL.

Figure 6. When Sg is true in phase 6.

path to reach its target position. So here no collision will occur. Eventually, each inner robot reaches
its target position. So finally S7 is true. |

5.3.6. Phase6
The tail will move to the left until the x-coordinate matches with the tdilsqrge:. In this phase, the tail will
move to make S, true.

Theorem 5.8: Ifwe have an asymmetric configuration C at some time t then after a finite number of moves
phase 6 terminates and S, becomes true.

Proof: In phase 6, if we have an asymmetric configuration, then depending on whether Sg is true or
not there are two cases. Let the smallest enclosing rectangle of C be ABCD where A is the origin and
AB = x-axis and AD = y-axis. Let without tail the smallest enclosing rectangle is AB'C’'D'. In this phase
without tail, all the robots are now on AB'C'D'.

Case-1: Let Sg is not true i.e. there is no symmetry in C’. Then the tail robot will move on the CD side,
no matter where tailiarger is AB will be the lexicographically largest string. Finally, tail will move until S,
becomes true.

Case-2: Let Sg is true (Figure 6). Since there is symmetry in C’, here the head robotis in A. Let P be the
point of intersection between B'C’ and CD. In this case, when the tail robot moves left in the line CD,
then it will move up to that point whose x-coordinate is the same as tailtgrget. In this move by the tail
when it will reach a point let R which is in between P and D then a vertical symmetry will be created.
The tail robot’s destination can not be [P,R] because then B’ will be the head. So when the tail crosses
R there will be a vertical symmetry. In this case also, S1 holds. When the tail robot moves left in CD then
in other cases coordinate system remains invariant and S, holds.

So in both cases, when phase 6 terminates then S; A S3 A S4 A S5 A Sy is true. [|

5.3.7. Phase7

The aim of this phase is that Head will move to headiarger (Figure 7). Consider a configuration that is
asymmetric and in phase 7, then with respect to the global coordinate system as fixed, let ABCD is the
smallest enclosing rectangle and 145 be the lexicographically largest string. Clearly head is on the side
AB and the tail is on CD. If we mark all the target points on the grid then let the smallest rectangle be
AB'C'D. Let headiarger be the final position of the head, then by finite move head will move to head:arger.

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS . 47

D TeE —— C
| 1
D’ e
A G B’ B
H N

Figure 7. In phase 7, head moves to it's fixed target and in phase 8, tail moves to its target point.

Theorem 5.9: Let C be the asymmetric configuration at time tin phase 7 then by a finite number of moves
by the head to the right phase 7 terminate when —Sg A S1 A Sy A Sg = true.

Proof: Let ABCD be the smallest enclosing circle of an asymmetric configuration C of phase 7, Here
ABis the lexicographically largest string. Now we have to plot the smallest enclosing rectangle of the
target pattern with respect to our current coordinate system. This phase aims to move the head robot
from the origin A to its fixed target position, which will be in the right direction of A on AB. As there
may be vertical symmetry in target configuration when the head moves to its target then also vertical
symmetry will happen. So in all the cases, AB will be a lexicographically larger string when the head
robot moves to its target position. So when the head reaches its final position phase 7 terminates and
—=So A S1 A Sy A Sgis true. |

5.3.8. Phase 8

Tail moves downwards up to tailtarge:. In this phase, the position of the tail will be upward of tailtarger.
So when in phase 8 tail will move downwards to the point tailigrger (Figure 7). So when in phase 8 then
—=So A S1 A Sy = true, but after tail move then Sq is true.

Theorem 5.10: I/f we have a configuration C at some time t then after a finite number of moves by the tail
So becomes true.

Proof: In this phase by a finite number of moves by the tail robot, the arbitrary pattern given as input
will form. After phase 6 may be the configuration has symmetry or not.

(1) Let the configuration is asymmetric. Then the tail robot is now on the CD side, where ABCD is the
smallest enclosing rectangle. Let AB'C'D’ be the s.rect of the target configuration. Then tailiarget
will be in the downwards vertical line of the tail. So when the tail robot moves down to its target
position AB will be always a lexicographically larger string.

(2) Let the configuration is asymmetric but the position of tailiarger is on the upper side or in its hor-
izontal line or downside. This is only possible when the initial configuration is the same as the
target without the tail’s position. In this case, the tail will move to its position. No symmetry will
occur during this move of the tail.

(3) Let the configuration is symmetric. As the initial configuration is asymmetric the symmetry may
arise in phase 7, so when there is a vertical symmetry then let ABCD be the s.rect and AB and BA be

48 (&) S.GHOSHETAL.

=Sy

)

Phase 1
| Sy] |ﬁ59 | | S3 A Sy |
Phase 2
Phase 6
Phase 7 +
Phase 7
b
Phase 8

Phase 5

Figure 8. Flow Chart of the Algorithm APFOPTMOVE.

the larger string, as S4 is true here so the target position for tail will be the downside of its recent
position and after it moves and reaches to its tdiliarger then Sg is true. [|

In Figure 8, we presented the algorithm AapFOPTMove by a flow chart. Starting from any asymmetric
configuration where Sy is not true, we can observe that the path ends, where Sy is true, passing through
a finite number of phases. So we can conclude that.

Theorem 5.11: The ApFOPTMOVE solves the Arbitrary pattern formation problem within finite time in
OBLOT model.

5.4. Move complexity of the algorithm

In [1], the author proved that any algorithm solving the arbitrary pattern formation problem in an
infinite grid requires Q(kD) moves, where D is the side of the smallest square that can contain
both initial and target configuration, that is, D = max{AB,CD,A’B’,C’'D’} and, k is the number of
robots. Let D’ = max{k, D}. Then the mentioned result in [1] becomes that any algorithm solving
the arbitrary pattern formation problem in an infinite grid requires Q (D’Z) moves. We show that our
algorithm requires O(D’) moves for each robot. Which gives the total number of required movements
is O(kD') = O(D'?), whichiis asymptotically optimal. In Phase 1, Phase 2, and Phase 3 of our algorithm,
only one robot moves. So a robot participating in these phases uses O(D’) move. Then in phase 4 a
robot comes down on the x-axis to form a compact line and in phase 5 a robot reaches its target posi-
tion from the x-axis, so here also a robot in total has to move at most 4D steps. In phase 6, phase 7, and
phase 8 only one robot moves, and that robot needs to make O(D’) moves. So we can conclude that
any phase of our algorithm requires O(D’) moves for a robot, which is asymptotically optimal. Since
starting from any asymmetric configuration, our algorithm terminates via a finite number of phases
among 8 phases, so we can finally conclude the following theorem.

Theorem 5.12: Arbitrary pattern formation is solvable by optimal O(D'%) moves in an asynchronous
scheduler by oblivious robots from any asymmetric configuration.

Now we observe that the time complexity of the APFOPTMOVE is O(D/z). We observed in the proof
of Theorem 5.12 that each robot makes O(D’) moves. Hence, in the worst case for each robot O(D’),

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS . 49

epochs are sufficient. Since the movements of robots are sequential in this algorithm, the algorithm
must terminate within O(kD’) = O(D’z) epochs. We record this result in the following Theorem.

Theorem 5.13: The aApFOpTMoVE algorithm solves the Apr problem within O(D’z) epoch time under
asynchronous scheduler.

In the next section, we propose a faster algorithm solving the Apr problem in LU MZ model under
an asynchronous scheduler.

6. Optimal time algorithm FastAPF for ApF

This section proposes an algorithm, named FasTAPF for Apr which is time optimal and move
optimal as well. Before going to the algorithm, for convenience, let's go through some defini-
tions, notions supporting the algorithm. Let ABCD be the unique smallest rectangle enclosing a
given initial configuration, where AB > BC. If ABCD is not square then consider the set of strings
S to be {Aag, Aga, Acp, Apc). If ABCD is square then consider the set of strings S to be {Aag, Aga,
Acps e, ABC: Acs AADs ADA}-

6.1. Coordinate system setup

If the given configuration is asymmetric then S contains a lexicographically strictly largest string. Let
Aag be the largest among other strings in S. Then robots consider A as the origin and AB direction as
the positive x-axis and AD direction as the positive y -axis. In such a case, the first robot in 145 string is
said to be head.

Each robot has a light. This light can take two colours, namely, HEAD and LINE which are readable as
well as communicable. The light can indicate another state when the light is off. We denote this one
as OFF colour.

Next suppose in a given configuration there is a robot, call it head, with HEaD colour ON on the
boundary of ABCD. There are two cases, firstly if the head is not situated in any corner and another
when the head is at a corner of the ABCD, say A. For the first case, we assume that the head is on the
side AB, such that AB > CD. For such a case, consider A as origin, AB direction as the positive x -axis,
and AD direction as the positive y -axis. For the second case, consider the head robot is situated at a
corner, say A. In such a case, consider A as the origin. If AB > BC then consider AB direction as positive
x-axis and AD direction as positive y -axis. If AB = BC, then we assume the configuration is asymmetric
and hence there is a lexicographically strictly largest string, say A4z is S. In such a case, consider the AB
direction as a positive x-axis and AD direction as a positive y -axis.

Definition 6.1 (Tail robot): Case-I: (When HeaD colour is not ON) In this case, we assume that the con-
figuration is asymmetric. The last robot in the lexicographically strictly largest string in S is said to be
Tail.

Case-II: (When HEAD colour is ON) In this case, the tail is the rightmost robot of the topmost horizontal
line.

Let the A’B'C’'D’ be the smallest rectangle enclosing the target pattern with A’B’ > B'C’. Let Ayp
be the largest (may not be unique) among all other strings in S for the target pattern. We denote the
ith target position in A4 string as t;. Then the target pattern is to be formed such that A = A, A'B’
direction is along the positive x-axis and A’D’ direction is along the positive y -axis.

Let s = max{AD,A’D’}. Lets name the lines parallel and above to x-axis by Hy, H1, ..., Hs. Name the
vertical lines from left torightas Vy, V5, . . ., where V; is the y-axis. Let at any time C(t) the configuration
be C(t). Let in the target pattern the number of robots in H; line be n;. Let in C(t) the total number
of robots below the line H; be b;. Let in C(t) the total number of robots above the line H; be a;. Let

50 (&) S.GHOSHETAL.

n;
Hg 4
Hy 1
Hg 2
H; 3
H, 3
Hj 4
H, 0
H, 2

Figure 9. Hs is a saturated line.

Table 3. Alist of invariant parameters for a robot.

Smallest enclosing rectangle ABCD with AB > BC

If the configuration is asymmetric, lexicographically largest string A4
Head robot

Tail robot

A wWN =

b= Z]</ nianda; = Zj>, ni. A horizontal line H; is said to be saturated if a; = a;and b; = b} In Figure 9
Hs is a saturated line.
The next subsection describes all the intermediate procedures of FastAPF.

6.2. Elements of the algorithm

In order to optimise the time, our main motive is to make the algorithm so that it allows parallel move-
ment of robot as much as possible avoiding collision. The algorithm is divided into six phases. Initially,
since the configuration is asymmetric, a robot that activates at first can find out the things listed in
Table 3.

Throughout the algorithm, the head robot remains head using HEAD colour as the flag. And further,
the coordinate system remains unaltered throughout the algorithm that has been taken care of. Once
the HEAD colour is ON and hence the head robot is fixed. Any robot other than the head or tail is said
to be inner robot. Next, we define terminologies for different configurations.

Cinit = Initial configuration

(1

(2) Ctarger = Target configuration

(3) C = A possible configuration from initial configuration
(4) C'=C\ {Head}

(5) C” =C\ {Tail}

(6) C" =C\ {Head, Tail}

(7) ;arger = Ctarget \ {Head)

(8) C{,/J,ger = Ctarget \ {Tail}

) {ﬁ,’,get = Crarget \ {Head, Tail}

(1)

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS . 51

Next, we define different conditions on configuration.

G:C= Ctarger

G:C'= l{arget
G:C" = ;élrget
G:(" = C;grger

C4 : HEAD colour is ON.

Cs : Head colour is at corner.

Ce : All inner robots are with LINE colour ON except those who are on a saturated line.

C; :Tail is at a point with x-coordinate max{AB + 1,A'B’ + 1, k} and y-coordinate max{BC, B'C’}.

Procedure-I: Input: =C3 v (C3 A =Cy A —(3)

In the first procedure, Head identifies itself and turns its HEAD colour on. Then it goes to origin
if it is not.

Output: C4 A Cs is true.

Discussion This procedure gets executed when either there is an inner robot not at its target
position or all inner robots are at their target but neither head nor tail is at its target position. In
such a case, the head robot first puts ON its HEAD colour and then moves leftwards until it reaches
its origin. Note that if the input configuration is asymmetric then the configuration throughout
the procedure remains asymmetric. And also the things listed in Table 3 remain unchanged.
Procedure-II: Input: C; A —=Cy

In this procedure, the head moves to its target position and turns off its HEAD colour if it is ON.

Output: Cy is true.

Discussion This procedure gets executed when every robot except the head is at their respec-
tive target position. In this phase, the head occupies its target position and turns off its HEAD colour
if it is ON. Now the head target must be on the x-axis, so either head needs to move right or left
to reach its destination in this procedure. If the head needs to move left then clearly the things
listed in Table 3 remain unchanged. Also in the other case, since the head target is the first target
position of the lexicographically largest string of the target pattern, the listed things in Table 3
remain unchanged.

Procedure-lll: Input: (C; A —=Cq) V (C4 A C5 A C3)

Case-I: If the y-coordinate of the tail target is the same as the y-coordinate of the tail, then the
tail reaches at target by horizontal movements.

Case-ll: If the y-coordinate of the tail target is not the same as the y-coordinate of the tail, then
we consider the following cases.

Case-lIA: If the y-coordinate of the tail target is greater than the y-coordinate of the tail, then
move upwards until Case-l is achieved.

Case-lIB: If the y-coordinate of the tail target is less than the y-coordinate of the tail, move hor-
izontally so that the x-coordinate of the tail target becomes the same as the x-coordinate of the
tail. Then the tail moves downwards until condition Cy is true.

Output: Co Vv Cq is true.

Discussion This procedure gets executed when either the pattern except the tail is formed (C; A
—Cy) or all inner robots are at their target position and the head is at the origin with head colour
ON (Ca A Cs A G3). For both cases, careful movement is assigned to the tail robot. For all the cases
it can be checked that the things listed in Table 3 remain unchanged. If the input configuration
was C; A —Cq, after execution of this procedure the target pattern is formed (Cp). And if the input
pattern was C4 A Cs A C3 then after execution of this phase the resulting configuration is such
that the target pattern is formed except head robot.

Procedure-1V: Input: C4 A Cs A =C3 A =Cy

In this procedure, the tail moves right until its x-coordinate becomes max{AB + 1,A’B’ + 1,k}.

Then the tail moves upward until its y-coordinate becomes max{BC, B'C’}.

52 (&) S.GHOSHETAL.

Output: C7 is true.

Discussion This procedure gets executed when at least one inner robot is not at its target posi-
tion and the head robot is at its origin. In this procedure, the robot moves rightwards in order to
ensure that there is enough big smallest rectangle of the current configuration for procedure-V
and procedure-VI to execute and also to ensure that AB > BC so that the coordinate system does
not change.

(5) Procedure-V: Input: C4 A Cs A =C3 A C7 A —Cp

In this procedure, if an inner robot is not on a saturated horizontal line then it checks whether
its LINE colour is ON or not. If the LINE colour is not ON, then it counts the number of robots below
it. Let's say the number is b. Then the robot counts the number, say, / of robots on the left side to
itin its horizontal line. Let v = b+ /+ 1. Then the robot tries to move to the vth vertical line in its
horizontal line. If vth vertical line is in its left (right) and its left (right) grid point is empty then it
moves to left (right). When a robot reaches the vth vertical line, the robot turns on its LINE colour.

Output: Cg is true (Figure 10).

Discussion These procedures are executed when the head robot is at the origin with its HEAD
colour ON and the tail robot’s coordinate is (max{AB + 1,A’B’ + 1, k}, max{BC, B'C’'}) and there is
at least one inner robot which is not on the saturated line and with no line colour ON. In this
procedure, such robot reaches at vth vertical line and turns ON its LINE colour. At the end of this
procedure in the configuration, the head and tail remain at their starting position and each inner
robot is either with LINE colour ON or on a saturated line. In these procedures since no robot jumps
through horizontal lines, so no collision of robots takes place.

(7) Procedure-VI: Input: C4 A Cs A =C3 A C7 A Cg

In this procedure, there are two exhaustive cases.

Case-I: This is the case when the robot sees that its own horizontal line is not saturated. In such
a case, the robot countsits vertical line number. Let the robot be at v;th vertical line. Then it moves
to the horizontal line which contains the v;th target position by vertical movements until it reaches
there (Figure 11).

Case-lI: This is the case when the robot sees that its own horizontal line is saturated. In this
case firstly if its LINE colour is ON, then it turns it OFF. Otherwise, if the robot is the kth robot on its
horizontal line from the left, then it tries to reach the kth target position on that horizontal line.
If kth target position in its horizontal line is in its left (right) and its left (right) grid point is empty
then it moves to left (right).

Output: Gz is true.

Discussion In the input configuration of this procedure an inner robot is either on a saturated
line or not on a saturated line but with its LINE colour ON. In this procedure, no two inner robots
with LINE colour ON are on the same vertical line. In this phase, two types of movements are hap-
pening simultaneously. Firstly robots with line colour ON but not on a saturated line do vertical
movements and rests do horizontal movements. Eventually, all robots will reach their destined
horizontal line and all horizontal lines will become saturated. Next, we need to show no two robots
collide in this procedure. We can guarantee that if no robot with LINE colour reaches a saturated
line. Now from the definition of a saturated line, one can note that every robot below a saturated
line has its target horizontal line below the saturated line. And also every robot above a saturated
line has its target horizontal line above the saturated line. Hence no robot making vertical move-
ment will reach a saturated line where horizontal movement is possibly happening. Hence this
procedure is collision-free.

The next subsection formally presents the algorithm FastAPF in flow chart form.

6.3. Algorithm FastAPF

The main algorithm FASTAPF is presented below in the flow chart in Figure 12.

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS e 53

n;
Hyg 3
Hr 1
Hg 2
Hy 3
H, 3
Hy 4
H, ° 0
H, < 2

Figure 10. When Cg is true.

H; n;
1=8 4
=17 1
1=6 2
i=25 1
1=4 3
=3 3
i =2 0
1=1 af

Figure 11. Procedure-Vlillustration.

Starting from any possible configuration where Cp is not true, in the flow chart, we can observe
that the path ends to the Cy configuration passing through some procedures. Hence we conclude the
following.

Theorem 6.2: The FASTAPF algorithm solves the Apr problem in LU MZ model.

6.4. Time complexity and movement analysis of FastAPF algorithm

We show that each of six procedures included in FASTAPF algorithm takes O(D’) epoch. The flow chart
in Figure 12 shows that starting from any asymmetric initial configuration the algorithm terminates via
executing a finite number of these procedures. This will prove our claim that, the algorithm FASTAPF
solves Apr problem in O(D’) epochs.

In Procedure-l, Procedure-Il, Procedure-lll, and Procedure-IV only one robot is making its move. And
in each of these procedures, arobot does O(D) moves, so all the phases can take D epochs in the worst

54 (&) S.GHOSHETAL.

Procedure-VI

Procedure-II Procedure-III lpx'occdurc-l

l
|7‘ o

Procedure-1V

CyACs

Procdure-I1I |

Figure 12. Algorithm FAsTAPF flow chart.

Figure 13. Animage related to Theorem 6.4.

case to complete. In Procedure-V in each horizontal line, robots are making horizontal parallel move-
ments. On a horizontal line H;, for all robots to reach the destined vertical line maximum it will take 2D’
epochs. Hence Procedure-V takes at most 2D’ epochs to complete. In procedure-VI, a robot with LINE
colour makes vertical movements. All vertical movements in this procedure happen simultaneously.
So all the vertical movements are done in max{BC, B'C’} epochs. Then in a saturated line horizontal
movements happen in order to reach the target positions. Similarly, this also takes 2D’ epochs in the
worst case. Hence this procedure also takes O(D’) epochs. Hence we conclude this discussion with the
following theorem.

Theorem 6.3: The FASTAPF algorithm solves the Apr problem in LU MZ model in O(D’) epochs.

Next, we show that the algorithm proposed in [1] takes O(D’?) epochs to complete. Which will
prove that the FASTAPF algorithm is faster. In phase 4 of the proposed algorithm in [1], a robot might
need to make 2 (D?) movements. Therefore, this algorithm requires Q(D’Z) epoch time to complete.
We state this in the following result.

Result 1: Algorithm proposed in [1] requires Q(D'"?) epoch time to solve Arbitrary Pattern Formation
problem.

Now we show that our algorithm is asymptotically optimal in time. Let’s consider an initial config-
uration of robots has the smallest enclosing rectangle a square of length n and each grid point of the

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS . 55

square has a robot. Thus there are k = n? robots in total. Let the target pattern be a compact line. Then
we can see that the farthest point on the line (wherever it may be placed) from the initial configura-

tionisat least "‘T” = % — 4 (See Figure 13). Hence there is a robot that at least needs to move X — vk

2772
steps. Hence at least % — 4 epochs are necessary. In this case, note that D = k. Hence we can state

the following.
Theorem 6.4: Any algorithm solving APF problem requires 2 (D') epochs.

The above result shows that the algorithm FAsTAPF is time optimal asymptotically. Next, we show
that algorithm FASTAPF is also move optimal.

Theorem 6.5: Algorithm FAsTAPF all total requires at most O(D/z) robot movements.

Proof: Any robot participating in Procedure-l, Procedure-Il, Procedure-lll, or Procedure-IV makes at
most 2D’ moves. Next any robot participating in Procedure-V only makes a horizontal move of length
at most D’. Next any robot participating in Procedure-VI makes at most a vertical move (if the robot is
not on a saturated horizontal line) of maximum length D’ followed by a horizontal move of maximum
length D’. Hence for each procedure, a robot participating in that procedure makes O(D’) moves in
that procedure. Since starting from any asymmetric configuration the algorithm FASTAPF terminates
via passing through a finite number of procedures. Hence for each robot, it needs to make O(D’)
moves. Thus, the total number of required robot moves in algorithm FAsTAPF is O(kD') = O(D’z). [|

7. Conclusion

This paper studies algorithms for ARBITRARY PATTERN FORMATION (APF) problem on an infinite grid by a
robot swarm starting from any asymmetric initial configuration in classical OBLO7T and LUMZT
robotic model. This work gives an algorithm for the Apr problem in OBLO7T model which is asymp-
totically move optimal. Then this work proposed another algorithm for the Apr problem in LUMZT
model which is asymptotically time optimal and move optimal as well. If D’ is the maximum of the
number of robots and the side of the smallest enclosing square enclosing both target and initial con-
figuration, then the first algorithm uses total O(D’?) movements and the second algorithm takes total
O(D’) epoch time and total O(D'?) moves to solve the Apr problem. Unfortunately, the move optimal
algorithm in OBLOT model is not time optimal, so studying for an algorithm in OBLO7T, which
is both move optimal and time optimal, could be a possible direction from this work. One can con-
sider another version of Apr problem where the initial or the target configuration of robots can have
multiplicity points.

Acknowledgement

We want to thank our colleague Dr. Kaustav Bose for his valuable advice in this work. We also want to thank the anonymous
reviewers for their valuable comments and suggestions which helped us to improve the quality of this paper.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by West Bengal State Government Fellowship Scheme University Grants Commission [P-
1/RS/23/2020].

56 (&) S.GHOSHETAL.

ORCID

Satakshi Ghosh "= http://orcid.org/0000-0003-1747-4037
Pritam Goswami "= http://orcid.org/0000-0002-0546-3894
Avisek Sharma "' http://orcid.org/0000-0001-8940-392X
Buddhadeb Sau "~ http://orcid.org/0000-0001-7008-6135

References

[l

[2]

[8

9l

[10]

(1]

[12]

[13]

[14]

[15]

[1e]

[17]

Bose K, Adhikary R, Kundu MK, et al. Arbitrary pattern formation on infinite grid by asynchronous oblivious robots.
Theor Comput Sci. 2020;815:213-227. DOI:10.1016/j.tcs.2020.02.016.

Suzuki |, Yamashita M. Distributed anonymous mobile robots - formation and agreement problems. In: Proceedings
of the 3rd International Colloquium on Structural Information and Communication Complexity (SIROCCO '96); 1996.
p. 1347-1363.

Yamashita M, Suzuki . Characterizing geometric patterns formable by oblivious anonymous mobile robots. Theor
Comput Sci. 2010;411(26):2433-2453. Available from: https://www.sciencedirect.com/science/article/pii/S0304397
510000745.

Flocchini P, Prencipe G, Santoro N, et al. Arbitrary pattern formation by asynchronous, anonymous, oblivious robots.
Theor Comput Sci. 2008;407(1-3):412-447. DOI:10.1016/j.tcs.2008.07.026.

Dieudonné Y, Petit F, Villain V. Leader election problem versus pattern formation problem. In: Lynch NA, Shvarts-
man AA, editors. Proceedings of the 24th International Symposium on Distributed Computing, DISC 2010,
September 13-15; Cambridge (MA): Springer; 2010. p. 267-281. (Lecture Notes in Computer Science; 6343).
DOI:10.1007/978-3-642-15763-9_26.

Bramas Q, Tixeuil S. Arbitrary pattern formation with four robots. In: Izumi T, Kuznetsov P, editors. Proceed-
ings of 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems, (SSS 2018),
November 4-7; Tokyo, Japan: Springer; 2018. p. 333-348. (Lecture Notes in Computer Science; Vol. 11201).
DOI:10.1007/978-3-030-03232-6_22.

Bose K, Das A, Sau B. Pattern formation by robots with inaccurate movements. In: Bramas Q, Gramoli V,
Milani A, editors. 25th International Conference on Principles of Distributed Systems, (OPODIS 2021), December
13-15, 2021, Strasbourg, France: Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik; 2021. p. 1-20. (LIPIcs; 217).
DOI:10.4230/LIPIcs.OPODIS.2021.10.

Bramas Q, Tixeuil S. Probabilistic asynchronous arbitrary pattern formation (short paper). In: Bonakdarpour B, Petit
F, editors. Proceedings of 18th International Symposium, Stabilization, Safety, and Security of Distributed Sys-
tems, (SSS 2016), November 7-10; Lyon, France; 2016. p. 88-93. (Lecture Notes in Computer Science; 10083).
DOI:10.1007/978-3-319-49259-9_7.

Cicerone S, Stefano GD, Navarra A. Embedded pattern formation by asynchronous robots without chirality. Dis-
tributed Comput. 2019;32(4):291-315. DOI:10.1007/500446-018-0333-7.

Cicerone S, Fonso AD, Stefano GD, et al. Arbitrary pattern formation on infinite regular tessellation graphs. CoRR.
2020;abs/2010.14152. Available from: https://arxiv.org/abs/2010.14152.

Yamauchi Y, Yamashita M. Pattern formation by mobile robots with limited visibility. In: Moscibroda T, Rescigno AA,
editors. 20th International Colloquium on Structural Information and Communication Complexity, SIROCCO 2013,
July 1-3, Revised Selected Papers; Ischia, Italy: Springer; 2013.p.201-212. (Lecture Notes in Computer Science; 8179).
DOI:10.1007/978-3-319-03578-9_17.

Lukovszki T. Fast collisionless pattern formation by anonymous, position-aware robots. In: Aguilera MK, Querzoni L,
Shapiro M, editors. Proceedings of 18th International Conference Principles of Distributed Systems, OPODIS 2014,
December 16-19, Cortina d’Ampezzo, Italy: Springer; 2014. p. 248-262. (Lecture Notes in Computer Science; 8878).
DOI:10.1007/978-3-319-14472-6_17.

Adhikary R, Bose K, Kundu MK, et al. Mutual visibility by asynchronous robots on infinite grid. In: Gilbert S, Hughes
D, Krishnamachari B, editors. Algorithms for Sensor Systems — 14th International Symposium on Algorithms and
Experiments for Wireless Sensor Networks, ALGOSENSORS 2018, August 23-24, Revised Selected Papers; Helsinki,
Finland: Springer; 2018. p. 83-101. (Lecture Notes in Computer Science; 11410). DOI:10.1007/978-3-030-14094-6_6.
Stefano GD, Navarra A. Gathering of oblivious robots on infinite grids with minimum traveled distance. Inf Comput.
2017;254:377-391. DOI:10.1016/j.ic.2016.09.004.

Bose K, Kundu MK, Adhikary R, et al. Arbitrary pattern formation by asynchronous opaque robots with lights. Theor
Comput Sci. 2021;849:138-158. DOI:10.1016/j.tcs.2020.10.015.

Bose K, Adhikary R, Kundu MK, et al. Arbitrary pattern formation by opaque fat robots with lights. CoRR.
2019;abs/1910.02706. Available from: http://arxiv.org/abs/1910.02706.

Kundu MK, Goswami P, Ghosh S, et al. Arbitrary pattern formation by asynchronous opaque robots on infinite grid.
CoRR. 2022;abs/2205.03053. DOI:10.48550/arXiv.2205.03053.

http://orcid.org/0000-0003-1747-4037
http://orcid.org/0000-0002-0546-3894
http://orcid.org/0000-0001-8940-392X
http://orcid.org/0000-0001-7008-6135
https://doi.org/10.1016/j.tcs.2020.02.016
https://doi.org/https://www.sciencedirect.com/science/article/pii/S0304397510000745
https://doi.org/10.1016/j.tcs.2008.07.026
https://doi.org/10.1007/978-3-642-15763-9_26
https://doi.org/10.1007/978-3-030-03232-6_22
https://doi.org/10.4230/LIPIcs.OPODIS.2021.10
https://doi.org/10.1007/978-3-319-49259-9_7
https://doi.org/10.1007/s00446-018-0333-7
https://arxiv.org/abs/2010.14152
https://doi.org/10.1007/978-3-319-03578-9_17
https://doi.org/10.1007/978-3-319-14472-6_17
https://doi.org/10.1007/978-3-030-14094-6_6
https://doi.org/10.1016/j.ic.2016.09.004
https://doi.org/10.1016/j.tcs.2020.10.015
http://arxiv.org/abs/1910.02706
https://doi.org/10.48550/arXiv.2205.03053

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS . 57

Kundu MK, Goswami P, Ghosh S, et al. Arbitrary pattern formation by opaque fat robots on infinite grid. International
Journal of Parallel, Emergent and Distributed Systems. 2022 Jun:1-29. DOI:10.1080%2F 17445760.2022.2088750.
Vaidyanathan R, Sharma G, Trahan J. On fast pattern formation by autonomous robots. Inform Comput.
2021;285:104699. Available from: https://www.sciencedirect.com/science/article/pii/S0890540121000146.

Feletti C, Mereghetti C, Palano B. Uniform circle formation for swarms of opaque robots with lights. In: Izumi T,
Kuznetsov P, editors. Proceedings of the 20th International Symposium, Stabilization, Safety, and Security of Dis-
tributed Systems, SSS 2018, November 4-7; Tokyo, Japan: Springer; 2018. p. 317-332. (Lecture Notes in Computer
Science; 11201). DOI:10.1007/978-3-030-03232-6_21.

Adhikary R, Kundu MK, Sau B. Circle formation by asynchronous opaque robots on infinite grid. Comput Sci.
2021;22(1). DOI:10.7494/csci.2021.22.1.3840.

Das S, Flocchini P, Santoro N, et al. Forming sequences of geometric patterns with oblivious mobile robots.
Distributed Comput. 2015;28(2):131-145. DOI:10.1007/500446-014-0220-9.

Das S, Flocchini P, Prencipe G, et al. Forming sequences of patterns with luminous robots. IEEE Access.
2020;8:90577-90597. DOI:10.1109/ACCESS.2020.2994052.

Fujinaga N, Yamauchi Y, Ono H, et al. Pattern formation by oblivious asynchronous mobile robots. SIAM J Comput.
2015;44(3):740-785. DOI:10.1137/140958682.

Cicerone S, Stefano GD, Navarra A. Asynchronous arbitrary pattern formation: the effects of a rigorous approach.
Distributed Comput. 2019;32(2):91-132. DOI:10.1007/5s00446-018-0325-7.

Pattanayak D, Foerster K, Mandal PS, et al. Conic formation in presence of faulty robots. In: Pinotti CM, Navarra A,
Bagchi A, editors. 16th International Symposium on Algorithms and Experiments for Wireless Sensor Networks, Algo-
rithms for Sensor Systems, ALGOSENSORS 2020, September 9-10, Revised Selected Papers; Pisa, Italy: Springer; 2020.
p. 170-185. (Lecture Notes in Computer Science; 12503): DOI:10.1007/978-3-030-62401-9_12.

Suzuki I, Yamashita M. Distributed anonymous mobile robots: formation of geometric patterns. SIAM J Comput.
1999;28(4):1347-1363. DOI:10.1137/5009753979628292X.

https://www.sciencedirect.com/science/article/pii/S0890540121000146
https://doi.org/10.1007/978-3-030-03232-6_21
https://doi.org/10.7494/csci.2021.22.1.3840
https://doi.org/10.1007/s00446-014-0220-9
https://doi.org/10.1109/ACCESS.2020.2994052
https://doi.org/10.1137/140958682
https://doi.org/10.1007/s00446-018-0325-7
https://doi.org/10.1007/978-3-030-62401-9_12
https://doi.org/10.1137/S009753979628292X

	1. Introduction
	2. Related works and our contribution
	2.1. Related work
	2.2. Our contribution
	2.3. Organization of the paper

	3. Robot model
	3.1. Classical oblivious robots
	3.2. Robots with lights
	3.3. Look–Compute–Move cycles
	3.4. Scheduler
	3.5. Movement
	3.6. Measuring run time

	4. Problem description
	4.1. Problem statement

	5. Optimal move APF algorithm (APFOPTMOVE)
	5.1. Agreement on global coordinate system
	5.2. A brief outline of APFOPTMOVE algorithm
	5.3. Detailed description of the eight phases
	5.3.1. Phase 1
	5.3.2. Phase 2
	5.3.3. Phase 3
	5.3.4. Phase 4
	5.3.5. Phase 5
	5.3.6. Phase 6
	5.3.7. Phase 7
	5.3.8. Phase 8

	5.4. Move complexity of the algorithm

	6. Optimal time algorithm FastAPF for APF
	6.1. Coordinate system setup
	6.2. Elements of the algorithm
	6.3. Algorithm FastAPF
	6.4. Time complexity and movement analysis of FastAPF algorithm

	7. Conclusion
	Acknowledgement
	Funding
	ORCID
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [493.483 703.304]
>> setpagedevice

